

GNCC CAPITAL, INC.

SUPPLEMENTAL INFORMATION

PRELIMINARY ASSAY RESULTS FROM GRAB SAMPLING AT "WHITE HILLS" EXPLORATION PROPERTIES

APRIL 2, 2014

MANAGEMENT COMMENTARY:

This a preliminary report and the final report from the Assay Laboratory will be published this week which will include an additional 66 elements.

Company Policy on Grab Sampling:

The Consulting Geologists have to do what they feel is appropriate for an initial independent assessment of each property in terms of where to sample, what to sample, and what type of sample to take, given that each property is different with respect to number of workings, number of mineralized showings, style of mineralization, number and length of faults and breccia zones, geology, structures, etc. Our policy is now to increase our grab sampling collection to a minimum of not less than 150 samples; this being for each and every one of our Exploration Properties.

Grab sampling constitutes the random selection of rock samples at random intervals for evaluation and detection of trace mineralization of the mineral being studied.

Typical surface mineralization could, dependent on the geophysical structure and history of the region, present a geochemical indication of underlying ore mineralization and potentially justify further research.

Whilst grab sampling is a rudimentary method of exploration, positive traces of the sought mineral would typically confirm the existence of that mineral below surface, although the actual structure and composition of the ore body would have to be defined by more advanced exploration methods.

A complete lack of trace mineralization would under certain conditions be cause for concern, as it would indicate a potential lack of the mineralization being sought, or a lack of geophysical movement in the earth's crust to churn the trace minerals towards the surface.

Management Commentary:

Management will continue to review all of the data from further grab sampling that is currently underway in order to confirm results in areas where better results have previously been obtained. As previously stated, Management views the use of new radar scanning technology to be of more use insofar as the gathering of workable data and to provide reasonably accurate indications as to where we should drill straight into the ore body.

The Company is keeping the grab sampling and the resulting assay reports to very reasonable cost in order to confirm activity until such time as the radar scanning technology is deployed on our various exploration properties.

These assay results are the first in a series of more than a dozen similar reports that will be evaluated over the coming weeks and months. Management will publish all of these reports as they become available.

Consulting Geologist Craig Parkinson has submitted his assay results for the interim sampling at "White Hills" Management and he notes that some of the grab samples results are encouraging and justify further exploration efforts which are in the planning stages. Investors are cautioned that whilst grab samples can be indicative of potential positive future results, much more work needs to be completed before a definitive outcome can be predicted. This work program to prove up resources and eventually reserves will constitute the bulk of management efforts over the coming months and shareholders will be kept abreast of developments

EXHIBIT:

Preliminary report from American Assay Labs dated March 28, 2014.

DATED: APRIL 2, 2014

NICOLAAS EDWARD "TED" BLOM GNCC CAPITAL, INC. PRESIDENT & CHIEF EXECUTIVE OFFICER

PRELIMINARY REPORT

CLIENT : PARKINSON GEOLOGIC SERVICES PROJECT : WHITE HILLS

REFERENCE: WH 1-WH 112
REPORTED: 28-Mar-2014

	Dry Wt	Au	Au (G)	Ag	Al	Ва	Ca
SAMPLES	lbs	ppm	ppm	ppm	ppm	ppm	ppm
WH 1	1.70	0.025					
WH 2	4.38	0.593					
WH 3	3.98	0.012					
WH 4	1.84	0.006					
BLANK		-0.003					
WH 5	2.84	0.019					
WH 6	2.48	0.008					
STD - Oxi96		1.840					
STD - AAL10							
WH 7	2.56	0.032					
WH 8	2.72	0.011					
WH 9	2.04	0.009					
WH 10	3.94	0.069					
WH 11	4.92	9.190					
WH 12	4.84	0.273					
WH 13	4.18	0.750					
WH 14	2.82	0.296					
WH 15	2.70	3.210	24 500				
WH 16 STD - OxA89	6.28	34.000	34.529				
		0.090					
STD - CDN-ME-6 WH 17	1 50	80.300	96.790				
WH 17 WH 18	2.50	0.331	90.790				
WH 10 WH 19	3.40	0.331					
WH 20	3.12	0.022					
WH 21	1.90	0.022					
WH 22	2.54	0.024					
STD - SK62	2.31	4.010					
STD - AAL10							
WH 23	3.50	0.061					
WH 24	2.84	0.180					
WH 25	2.80	0.009					
WH 26	4.64	0.089					
WH 27	5.74	0.011					
WH 28	6.54	2.110					
WH 29	2.02	0.742					
WH 30	2.38	0.135					
WH 31	2.42	0.787					
WH 32	2.80	1.080					
WH 33	4.10	0.011					
WH 34	4.98	0.006					
WH 35	3.98	0.019					
WH 36	1.90	0.010					
WH 37	4.06	0.019					
WH 38	3.36	0.010					

Page 1 of 24 AAL-008

PRELIMINARY REPORT

CLIENT : PARKINSON GEOLOGIC SERVICES PROJECT : WHITE HILLS

PROJECT: WHITE HILLS
REFERENCE: WH 1-WH 112
REPORTED: 28-Mar-2014

CAMPLEC	Dry Wt	Au	Au (G)	Ag	Al	Ba	Ca
SAMPLES	lbs	ppm	ppm	ppm	ppm	ppm	ppm
WH 39	1.16	0.150					
WH 40	3.12	5.030					
WH 41	4.62	0.019					
WH 42	5.34	0.059					
WH 43	6.90	0.007					
WH 44	4.80	0.018					
WH 45	1.80	0.014					
WH 46	3.94	0.003					
WH 47	3.70	0.011					
WH 48	4.12	0.164					
WH 49	3.40	0.008					
WH 50	3.94	0.017					
WH 51	3.84	0.034					
WH 52	4.36	0.135					
WH 53	9.96	3.600					
WH 54	4.08	0.238					
WH 55	5.04	5.080					
WH 56	1.94	0.362					
WH 57	4.40	0.296					
WH 58	5.42	0.014					
WH 59	4.32	0.009					
WH 60	4.90	0.016					
WH 2-X		0.540					
WH 6-X		0.005					
WH 8-X		0.006					
WH 14-X		0.277					
WH 18-X		0.308					
WH 25-X		0.008					
WH 34-X		0.006					
WH 35-X		0.012					
WH 61	2.88	0.005					
WH 62	4.10	0.016					
WH 63	6.64	-0.003					
WH 64	5.74	0.005					
WH 65		-0.003					
WH 66	2.76	0.005					
WH 67	1.72	-0.003					
WH 68	4.70	0.006					
WH 69	3.30	0.006					
BLANK		-0.003					
WH 70	2.82	-0.003					
WH 71	2.36	0.013					
WH 72	1.78	0.031					
WH 73	2.50	0.049					
WH 74	4.60	0.022					

Page 2 of 24 AAL-008

PRELIMINARY REPORT

CLIENT : PARKINSON GEOLOGIC SERVICES PROJECT : WHITE HILLS

REFERENCE: WH 1-WH 112
REPORTED: 28-Mar-2014

SAMPLES	Dry Wt lbs	Au ppm	Au(G)	Ag ppm	Al ppm	Ba ppm	Ca ppm
WH 75 WH 76 WH 77 WH 78 WH 79	2.62 5.62 2.94 2.62 5.12	0.176 0.003 -0.003 0.009 0.065					
WH 80 WH 81	2.50	2.040					
WH 82 WH 83	2.42 1.88	1.150					
STD - SK62 STD - CDN-ME-6 WH 84	2 06	3.950					
WH 85 WH 86	3.96 4.10 3.74	0.354 0.021 0.083					
WH 87 WH 88	2.54	0.289					
WH 89 WH 90	4.80 5.48	0.619 1.000					
WH 91 WH 92	4.58 6.02	0.286 1.550					
STD - Oxi96 STD - AAL10 WH 93	1.62	1.770 2.740					
WH 94 WH 95	2.18	1.170 0.915					
WH 96 WH 97	2.92 1.80	0.169 0.465					
WH 98 WH 99	5.40 1.90	0.557					
WH 100 WH 101 WH 102	3.92 1.54 3.38	2.570 0.748 0.097					
WH 103 WH 104		0.054 3.600					
STD - OxA89 STD - AAL10	2 00	0.091					
WH 105 WH 106 WH 107	3.08 5.18 4.18	0.065 0.065 0.165					
WH 108 WH 109	5.38	0.242					
WH 110 WH 111	3.70 4.46	3.860 1.920					
WH 112 WH 61-X	2.76	1.420					

Page 3 of 24 AAL-008

PRELIMINARY REPORT

CLIENT : PARKINSON GEOLOGIC SERVICES PROJECT : WHITE HILLS

PROJECT: WHITE HILLS
REFERENCE: WH 1-WH 112
REPORTED: 28-Mar-2014

SAMPLES	Dry Wt lbs	Au ppm	Au(G) ppm	Ag ppm	Al ppm	Ba ppm	Ca ppm
WH 75-X		0.170					
WH 83-X		0.770					
WH 92-X		1.620					
WH 106-X		0.087					

Page 4 of 24 AAL-008